To Bunt or Not To Bunt: the Situational Expected Value of Bunting Versus the Shift in MLB

Andrew Fenichel¹

¹Northwestern University, Evanston, Illinois, United States

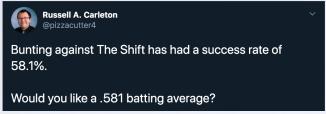
Abbreviated abstract: MLB teams are utilizing the defensive shift more often than ever before, which begs the questions: (a) When should MLB hitters bunt, as opposed to swing away, versus the shift? and (b) How much of an advantage can be obtained by bunting when it is the superior strategy? This project addresses these questions by determining the expected runs generated from bunting and swinging away for individual players in varying base-out states using a Run Expectancy Matrix and player-specific hitting data. The results vary by individual player, but generally show that bunting is almost always favorable with no outs and almost never favorable with two outs. When favorable, bunting can generate substantial increases in expected run production relative to swinging away: for example, the mean increase is 14.3% with no outs and a runner on first for 2019's top-10 most shifted left-handed hitters.

Related publications:

- Sports Info Solutions, What We Can Learn From Rougned Odor's Bunts Against the Shift (2019)
- Jeff Sullivan, More About Bunting and Beating the Shift (2014)

adfenichel@gmail.com – 1 @Andrew Fenichel

Problem, Data, Challenges


Many MLB players now face shifts for a very significant portion of their at-bats (see chart below). By calculating expected runs (xRuns) for bunting versus the shift and for swinging away, we can determine which strategy is superior for every base-out situation, and furthermore, by platoon split for every individual MLB hitter.

						Shi	ifts		Non-S	hifts							_	Shif	ts		Non-S	hifts
Year	Batter	Team	Bat Side	Total PA	PA	%	wOBA	PA	%	wOBA		Year B	itter	Team	Bat Side	Total PA	PA	%	wOBA	PA	%	wOBA
2019	Gallo, Joey	T	L	293	281		.390	12	4.1	.644	- 7	2019	Hoskins, Rhys	P	R	699	493	70.5	.352	206	29.5	.335
2019	Davis, Chris	•	L	335	305		.257	30	9.0	.215	- 2	2019 🕺	Renfroe, Hunter	Sp	R	493	340	69.0	.317	153	31.0	.327
2019	Carpenter, Matt	\$	L	471	417		.315	54	11.5	.294	2	2019	Sanchez, Gary	M	R	432	285	66.0	.406	147	34.0	.241
2019	Bruce, Jay	P	L	319	280		.319	39	12.2	.363	1	2019	Zunino, Mike	$T_{ m B}$	R	289	187	64.7	.206	102	35.3	.289
2019	Olson, Matt	\mathcal{X}^s	L	533	463		.358	70	13.1	.419	1	2019	Frazier, Todd	¥	R	498	287	57.6	.321	211	42.4	.337
2019	Granderson, Curtis	\$1	L	362	305	84.3	.262	57	15.7	.347	2	2019	Dozier, Brian	W	R	480	255	53.1	.334	225	46.9	.324
2019	Moreland, Mitch	В	L	331	274	82.8	.347	57	17.2	.336	2	2019	Bryant, Kris	(6)	R	628	318	50.6	.388	310	49.4	.374
2019	Calhoun, Kole	À	L	617	498	80.7	.347	119	19.3	.256	2	2019	Grichuk, Randal	4	R	626	311	49.7	.333	315	50.3	.276
2019	Belt, Brandon	ş	L	613	493	80.4	.335	120	19.6	.253	2	2019	Voit, Luke	M	R	504	239	47.4	.319	265	52.6	.385
2019	Bellinger, Cody	<u>1</u>	L	640	513	80.2	.410	127	19.8	.433	2	2019	Sano, Miguel	Φ	R	439	207	47.2	.359	232	52.8	.396

EDA dataset of the top-10 most shifted RHH and LHH from 2019 (Baseball Savant/Baseball Reference)

Challenges

- With a runner on 3rd, defenses will often go away from the shift
 - For this project, I disregarded base-out situations involving a runner on 3rd
- Individual hitter bunting sample sizes are very small, especially after isolating for bunts versus the shift
 - To combat this, I created the "league average bunter versus the shift"

The right idea, but it's not that simple (Russell A. Carleton on Twitter)

An example of a defensive pull-side shift versus Dodgers 1B Max Muncy, with directional ball-in-play probabilities (MLB/ Statcast)

Methodology

Expected Runs Swinging = ((Player BB% + HBP% + 1b%) * xRuns(1)) + (Player 2b% * xRuns(2)) + (Player 3b% * xRuns(3)) + (Player HR% * (1 + xRuns(0))) + (1 - Player OBP * xRuns(0 + 1 OUT))

Runners	o Outs	1 Out	2 Outs						
Empty	0.461	0.243	0.095						
1	0.831	0.489	0.214						
2	1.068	0.644	0.305						
12_	1.373	0.908	0.343						
3	1.426	0.865	0.413						
1_3	1.798	1.140	0.471						
_23	1.920	1.352	0.570						
123	2.282	1.520	0.736						
Due Franches and Matrix for the Jacobs and a self-self-self-self-self-self-self-self-									

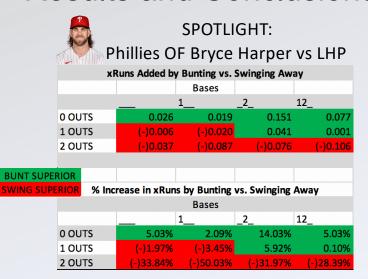
Run Expectancy Matrix for the league average offense for each of the 24 baseout states (FanGraphs)

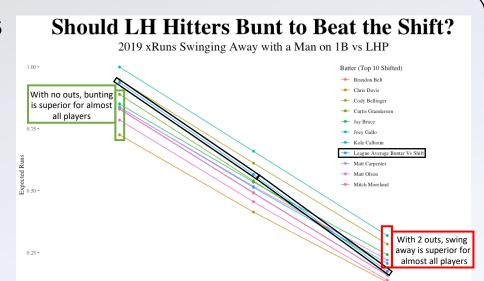

```
Phillies OF Bryce Harper's 2019 Platoon Splits
Platoon Splits
                  Share & more ▼ Glossarv
                                                             (Baseball Reference)
Split
vs RHP
                                        70 13 2 77 125 .249 .375 .474 .849 183
vs LHP
                                  0 15 44 2 1 22 53 .283 .366 .583 .949 109
      bunt_and_shift_dat <- bunt_and_shift_dat %>%
 13
        mutate(expected_runs_vs_r_basesempty_0out =
 14
                   ((bb_vs_r/(pa_vs_r - ibb_vs_r) + hbp_vs_r/(pa_vs_r - ibb_vs_r) +
 15
                   singles_vs_r/(pa_vs_r - ibb_vs_r)) * 0.831) +
                   (doubles_vs_r/(pa_vs_r - ibb_vs_r) * 1.068) +
                   (triples_vs_r/(pa_vs_r - ibb_vs_r) * 1.426) +
 18
                   (hr_vs_r/(pa_vs_r - ibb_vs_r) * 1.461) +
 19
                   ((1 - obp_vs_r) * 0.243)
 20
```

R code calculating expected runs swinging away given a RHP and the bases empty with no outs

General prob. of bunt in-play: 49.6%,

Prob. of safe given bunt in-play vs shift: 58.1%


Prob. of reaching base safely ≈ 50.7%



adfenichel@gmail.com – 3 @Andrew_Fenichel UCSAS 2020

Results and Conclusions

Outs

Next Steps:

- Account for other variables, including live count, pitcher ability, on-deck and in-the-hole hitter ability, team win probability, probability of runner(s) on-base advancing extra bases over expected, other ball-in-play outcomes (e.g., GIDP, errors, sac flies), etc.
- Having more data on individual hitter bunting abilities would also be helpful.

adfenichel@gmail.com – 4 @Andrew_Fenichel