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Abbreviated abstract: In this paper, we develop a group learning approach to analyze the
underlying heterogeneity structure of shot selection among professional basketball players in the
NBA. We propose a mixture of finite mixtures (MEFM) model to capture the heterogeneity of shot
selection among different players based on Log Gaussian Cox process (LGCP). Our proposed
method can simultaneously estimate the number of groups and group configurations. Ultimately,
our proposed learning approach is further illustrated in analyzing shot charts of selected players in

the NBA’s 20172018 regular season.

Data: We focus on players that have made more than 400 field goal attempts (F'TA).

D € [0,47] x [0,50|. Indexing the players with ¢ € {1,...,191}, the locations of shots, both made
and missed, for player~¢ are denoted as X; = {x;1,...,zin}, Vr;7. € D, where T; is the total
number of attempts made by player~:¢ on the offensive half court.

Chanllenge: Considering the random nature of shot locations; the number and estimation of
oroups; Computational algorithm

Contribution: A novel methodology based on mixtures of finite mixture model and spatial point
process: A Gibbs sampler that enables eflicient Bayesian inference; Consistently estimates the
number of groups
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Model and Methods

The LGCP can be written hierarchically as
y ~ PP(A());
A(-) = exp(Z£()).

where k(-,-) is the covariance function of the Gaussian
process, Z(-).

Let the matrix C_ be that C = (j(l), ’i(z)! . ,i(”)), and
denote C!") = \))| Then, following the approach in Cervone
et al. (2016), we compute the players’ similarity matrix H as:

c(/) cU)
Hf,j — €EXP § — Z c(i‘) B Z CU) :
where i,j € {1,...,n} and ||-|| is L2 norm. It can be seen that

H is symmetric, and H € R"*"
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Model and \/[ethods

k ~ p(-),where p(-) isa p.m.f on {1,2, .

Tos = To Gamma(a, ), r,s=1,...,k,

Us = Us ™~ N(po, kg 1 T2Y), r,s=1,...,k

pr(zi=j | m,k)=mj, Jj=1,...,k,i=1,...,n,
7 | k ~ Dirichlet(~,...,y),

d : :
Silz,U, T,k ne N(,uu, 1), pij = Uziz;, Tij = Tzzz 1 <0< )<,

A default choice of p(-) is a Poisson(1) distribution truncated to
be positive. . is Fisher-Transformation of H. The larger .&;
indicates the closer A\; and A;. U = (U,s) € (—o0, +00)**X and
T =(Ts) € (0,400) >k are symmetric matrices. U, = Us,
iIndicating the mean closeness of any function A; in cluster r and
any function A; in cluster s. T,s = T indicating the precision of

closeness between any intensity A; in cluster r and any function A;
In cluster s.

AT 5 A A

Algorithm 2 Bayesian Group Learning Procedure for Basketball Players

1: Fit LGCPs for n different players Q(l y? ... y™ via inlabru and get n underlying
intensity surface A (D)), )\(2)( ), ..., AL,

2: Use (4) and (5) to construct matrix S and matrix % and based on
AW ), XD (), A (),

3: Get B posterior samples of z(1) 22 . 2B from .# via Algorithm 1,

4: Summary posterior samples by Dahl’s method.
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Real Data Analysis

We run 1,000 MCMC iterations and the first 500 iterations as
burn-in period. The sizes of the nine groups are 10, 59, 8, 19, 24, 8§,
10, 51, and 2 respectively.

Group 1 Group 1 Group 2 Group 2 Group 3 Group 3
Marcin Gortat Robin Lopez Bradley Bea CJ McCollum
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