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Markov Chain Monte Carlo



Introduction

• Fact:

Your desired parameters are not in the analytical form or extremely

hard to solve out.

• Solution:

The sampling algorithms, like Markov Chain Monte Carlo

• Reason:

By constructing a Markov chain, we can sample the desired

distribution by observing the chain after a number of iterations. The

sample distribution will match more closely to the actual desired

distribution as the iterations increase.
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Example: Monte Carlo Integration

General problem:

Evaluating E[h(X )] =
∫
h(x)π(x)dx can be difficult.

However, if we can draw samples:

X (1),X (2), ...,X (N) ∼ π(x) (1)

Then, we can estimate:

E[h(X )] ≈ 1

N

N

∑
t=1

h(X (t)) (2)

This is Monte Carlo (MC) Integration.
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Markov Chain

A Markov chain is generated by sampling:

X (t+1) ∼ p(x |x (t)), t = 1, 2, ... (3)

Here p is the transition kernel.

So X (t+1) depends only on X (t), rather than X (0), X (1), X (2), ...,

X (t−1)

We can summarize as following:

p(X (t+1)|X (t),X (t−1), ...,X (0)) = p(X (t+1)|X (t)) (4)
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An example of Markov Chain

A first order auto-regressive process with lag-1 auto-correlation 0.5.

X (t+1)|X (t) ∼ N(0.5x (t), 1) (5)

A simulation is conducted as following, which contains two different

starting points:

Figure 1: Simulation with two starting points

The chains seemed to have forgotten their starting positions.
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Sampling Algorithm Overview

The most fundamental MCMC sampling algorithm are:

• Gibbs Sampling

1. Require for the analytic form of the full conditional distribution.

2. High-efficiency – the sequence will converge with little iterations.

• Metropolis-Hasting Algorithm

1. More flexible – no need for the deduction of full conditional

distribution.

2. Some challenges for setting up the proposal distribution – experience

needed to control the accept rate between 20% to 30%.
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Full Conditional Distribution and Gibbs Sampling

• Full conditional distributions:

The distributions p(θ|σ2, y1, ..., yn) and p(σ2|θ, y1, ..., yn) are called

the full conditional distributions of σ2 and θ respectively, as they are

each a conditional distribution of a parameter given everything else.

• Gibbs Sampler:

Given a current state of the parameters φ(s) = {θ(s), σ2(s)}, we

generate a new state as follows:

1. sample θ(s+1) ∼ p(θ|σ2(s), y1, ..., yn);

2. sample σ2(s+1) ∼ p(σ2|θ(s+1), y1, ..., yn);

3. update φ(s+1) = {θ(s+1), σ2(s+1)}
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Generalized Gibbs Sampler

Suppose you have a vector of parameters φ = {φ1, ..., φp}, and your

information about φ is measured with p(φ) = p(φ1, ..., φp). For example,

in the normal model φ = {θ, σ2}, and the probability measure of interest

is p(θ, σ2|y1, ..., yn). Given a starting point φ(0) = {φ(0)
1 , ..., φ

(0)
p }, the

Gibbs sampler generates φ(s) from φ(s−1) as follows:

• sample φ
(s)
1 ∼ p(φ1|φ

(s−1)
2 , φ

(s−1)
3 , ..., φ

(s−1)
p )

• sample φ
(s)
2 ∼ p(φ2|φ

(s)
1 , φ

(s−1)
3 , ..., φ

(s−1)
p )

......

• sample φ
(s)
p ∼ p(φp |φ(s)

1 , φ
(s)
2 , ..., φ

(s)
p−1)

Markov Property: In this sequence, φ(s) depends on φ(0), ..., φ(s−1) only

through φ(s−1), i.e. φ(s) is conditionally independent of φ(0), ..., φ(s−2)

given φ(s−1).
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Metropolis Algorithm

The Metropolis algorithm proceeds by sampling a proposal value θ∗

nearby the current value θ(s) using a symmetric proposal distribution

J(θ∗|θ(s)).
Usually J(θ∗|θ(s)) is very simple, with samples from J(θ∗|θ(s)) being

near θ(s) with high probability. Examples include:

• J(θ∗|θ(s)) ∼ U(θ(s) − δ, θ(s) + δ)

• J(θ∗|θ(s)) ∼ N(θ(s), δ2)
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Metropolis Algorithm

The algorithm is as following:

1. Sample θ∗ ∼ J(θ∗|θ(s))
2. Compute the acceptance ratio:

r =
p(θ∗|y)
p(θ(s)|y)

=
p(y |θ∗)p(θ∗)

p(y |θ(s))p(θ(s))
(6)

3. Update

θ(s+1) =

{
θ∗, p = min(r , 1)

θ(s), p = 1−min(r , 1)
(7)

• Step 3 can be accomplished by sampling u ∼ U(0, 1) and setting

θ(s+1) = θ∗ if u < r and setting θ(s+1) = θ(s) otherwise.

• In many cases, computing the ratio r directly can be numerically

unstable, a problem that often can be remedied by computing the

logarithm of r :
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Metropolis Hastings Algorithm

Metropolis Hastings Algorithm is the generalized and multi-parameters

version of Gibbs sampling and Metropolis algorithm. Let’s consider a

simple example where our target probability distribution is p0(u, v), a

bivariate distribution for two random variables U and V .

1. Update U:

• Sample u∗ ∼ Ju(u∗|u(s), v (s))
• Compute the acceptance ratio:

r =
p0(u

∗, v (s))

p0(u(s), v (s))
∗ Ju(u

(s)|u∗, v (s))
Ju(u∗|u(s), v (s)

(8)

• Update

u(s+1) =

{
u∗, p = min(r , 1)

u(s), p = 1−min(r , 1)
(9)

• Sampling u ∼ U(0, 1) and setting u(s+1) = u∗ if u < r and setting

u(s+1) = u(s) otherwise.
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Metropolis Hastings Algorithm

After updating U, we continue to update V:

1. Update V :

• Sample v∗ ∼ Jv (v∗|u(s+1), v (s))

• Compute the acceptance ratio:

r =
p0(u

(s+1), v∗)

p0(u(s+1), v (s))
∗ Jv (v

(s)|u(s+1), v∗)

Jv (v∗|u(s+1), v (s))
(10)

• Update

v (s+1) =

{
v∗, p = min(r , 1)

v (s), p = 1−min(r , 1)
(11)

• Sampling u ∼ U(0, 1) and setting v (s+1) = v∗ if u < r and setting

v (s+1) = v (s) otherwise.
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Proposal Distribution

The proposal distribution is the most ”challenging” part for conducting

the Metropolis algorithm.

• Without restriction:

Normal distribution: θ∗ ∼ N(θt−1, σ2
p )

• With restriction:

Random walk: f (θ∗) = f (θt−1) + ε and ε ∼ N(0, 1)

Example:

θ > 0, then apply log function.

θ∗ can be generated from lognormal(log(θt−1), σ2
p )
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Combination

In complex models, it is often the case that conditional distributions are

available for some parameters but not for others. In these situations we

can combine Gibbs and Metropolis-type proposal distributions to

generate a Markov chain to approximate the joint distribution of all of

the parameters.
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More to talk about

1. Stationary:

As t → ∞, the Markov chain converges to its stationary distribution.

Technique: trace plot, effective sample size (ESS)

Package: ’coda’ in R

2. Burn-in:

Typically, we burn-in the initial simulation values since they are most

likely nonstationary, and study the remaining part.

3. Gap:

In order to avoid the dependency, we need to pick up the simulation

values by gaps.

4. Chains:

Also, we will build more than 1 chain to make sure the sampler is

representative for the distribution. By the way, the calculation of

deviance information criterion (DIC) requires at least 2 chains.
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Example

Figure 2: The trace plot of the raw MCMC
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Example

Figure 3: The trace plot of the updated sequence
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Software

• WinBUGS (Bayesian inference Using Gibbs Sampling)

• JAGS (Just Another Gibbs Sampler)

• Stan – with linkage of most of data science softwares via multiply

platforms

• R packages: rjags, coda, mcmc, BRugs, etc.
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Tweedie Distribution



Tweedie Distribution Overview

Tweedie distribution can be defined as Tw(µ, φ, p).

• µ is the expected mean for the Tweedie distribution.

• φ is called the dispersion parameter.

• p, or power, controls what distribution it belongs to.

Property:

• A special case of exponential dispersion models.

• Variance = φµp.

• Most interested in p ∈ (1, 2), which is defined as compound

Poisson-gamma distribution.
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Compound Poisson-gamma distribution

Due to its special property – mass at zero and continue otherwise, the

Tweedie model with p ∈ (1, 2), or the compound Poisson-gamma

distribution, is popular in insurance industry.

Denote the total auto insurance claim in dollar is Y , the frequency of

claim is N, and the severity of each claim is Z . Then, we have:

Y =
N

∑
n=1

Zn (12)

N ∼ Poisson(λ) (13)

Z ∼ gamma(α, β) (14)

N |= Z (15)
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Compound Poisson-gamma distribution

We say Y ∼ Tw(µ, φ, p). Also:

λαβ = µ (16)

λα(α + 1)β2 = φµp (17)

(18)

We can solve:

λ =
µ2−p

φ(2− p)
(19)

α =
2− p

p − 1
(20)

β = φ(p − 1)µp−1 (21)
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Compound Poisson-gamma distribution

The probability function for the Tweedie distribution with a power

p ∈ (1, 2) is:

1. For y = 0:

P[Y = 0] = exp {−λ}

= exp

{
− µ2−p

φ(2− p)

} (22)

2. For y > 0:

fY (y) = e
− y

β e−λ
∞

∑
n=1

1

Γ(nα)βnα
ynα−1 λn

n!

= exp

{
− y

φ(p − 1)µ(p−1) −
µ(2−p)

φ(2− p)

}
1

y

∞

∑
j=1

{
1

2−p (
y

φ(p−1) )
2−p
p−1
}j

φjΓ( (2−p)jp−1 )j !

(23)
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Parameter Estimation for

Tweedie Model with MCMC

Approach



Model

In order to study the key factors that affects the auto insurance claims,

we can set up:

log(µs) = Xsγ + εrandom (24)

εrandom ∼ N(0, σ2) (25)

where s indicates for different location; Xs contains the information

about policyholders, including personal information as well as vehicle

information; γ is the factors, which we are interested in; ε covers all

other information we don’t discuss here.

Therefore, the parameters we are going to analyze are: µs , γ, σ2, φ, and

p.
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Why MCMC Approach

1. Advantage:

• No need to involve huge amount of mathematical computation

• Provide a good estimate for φ and p

2. Disadvantage:

• Sampling algorithm, especially Metropolis Hasting, consumers great

energy

• In order to achieve the optimal accept rate, the proposal distribution

adjustment sometimes is annoying
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Model

Apply the MCMC to estimate these parameters:

for m in 1 : M do

Update γ, σ2, φ, and p

for s in 1 : S do
Update µs

end

end
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Simulation Study - Univariate Case

Suppose we are studying the auto insurance claims in two different

locations, each with 200 customers respectively. Let’s begin with

univariate case, that is only one factor we need to consider for the auto

insurance claims.

Parameter True Value Our Estimate

γ 5 5.03

σ2 1 1.03

φ 1 0.98

p 1.5 1.48

Table 1: Summary of the simulation study
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Simulation Study - Univariate Case

Figure 4: The MCMC result for the γ
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Simulation Study- Univariate Case

Figure 5: The MCMC result for the σ2
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